Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study
نویسندگان
چکیده
منابع مشابه
Exploring Word Embeddings for Unsupervised Textual User-Generated Content Normalization
Text normalization techniques based on rules, lexicons or supervised training requiring large corpora are not scalable nor domain interchangeable, and this makes them unsuitable for normalizing user-generated content (UGC). Current tools available for Brazilian Portuguese make use of such techniques. In this work we propose a technique based on distributed representation of words (or word embed...
متن کاملAn Empirical Study of Unsupervised Semantic Classification of Chinese Reviews
This paper is an empirical study of unsupervised semantic classification of Chinese reviews. The focus is on exploring the ways to improve the performance of the unsupervised semantic classification based on limited existing semantic resources in Chinese. On the one hand, all available Chinese semantic lexicons — individual and combined — are evaluated under our proposed framework. On the other...
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولa frame semantic approach to the study of translating cultural scripts in salingers franny and zooey
the frame semantic theory is a nascent approach in the area of translation studies which goes beyond the linguistic barriers and helps us to incorporate cognitive and cultural factors to the study of translation. based on rojos analytical model (2002b), which centered in the frames or knowledge structures activated in the text, the present research explores the various translation problems that...
15 صفحه اولExploring the Effects of External Semantic Data on Word Embeddings
Distributed word embeddings have been a groundbreaking development that is widely used in many deep Natural Language Processing tasks such as Machine Translation, Question Answering and etc. However, despite its success, currently popular word embedding methods such as GloVe, Skipgram or CBOW only consider distributional statistics of words on their own without any external semantic information...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data Science and Engineering
سال: 2019
ISSN: 2364-1185,2364-1541
DOI: 10.1007/s41019-019-0097-5